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Abstract 

Background:  Ontology-based semantic similarity measures based on SNOMED-CT, 
MeSH, and Gene Ontology are being extensively used in many applications in biomedi‑
cal text mining and genomics respectively, which has encouraged the development 
of semantic measures libraries based on the aforementioned ontologies. However, 
current state-of-the-art semantic measures libraries have some performance and 
scalability drawbacks derived from their ontology representations based on relational 
databases, or naive in-memory graph representations. Likewise, a recent reproducible 
survey on word similarity shows that one hybrid IC-based measure which integrates 
a shortest-path computation sets the state of the art in the family of ontology-based 
semantic measures. However, the lack of an efficient shortest-path algorithm for their 
real-time computation prevents both their practical use in any application and the use 
of any other path-based semantic similarity measure.

Results:  To bridge the two aforementioned gaps, this work introduces for the first 
time an updated version of the HESML Java software library especially designed for 
the biomedical domain, which implements the most efficient and scalable ontology 
representation reported in the literature, together with a new method for the approxi‑
mation of the Dijkstra’s algorithm for taxonomies, called Ancestors-based Shortest-Path 
Length (AncSPL), which allows the real-time computation of any path-based semantic 
similarity measure.

Conclusions:  We introduce a set of reproducible benchmarks showing that HESML 
outperforms by several orders of magnitude the current state-of-the-art libraries in the 
three aforementioned biomedical ontologies, as well as the real-time performance and 
approximation quality of the new AncSPL shortest-path algorithm. Likewise, we show 
that AncSPL linearly scales regarding the dimension of the common ancestor sub‑
graph regardless of the ontology size. Path-based measures based on the new AncSPL 
algorithm are up to six orders of magnitude faster than their exact implementation in 
large ontologies like SNOMED-CT and GO. Finally, we provide a detailed reproducibility 
protocol and dataset as supplementary material to allow the exact replication of all our 
experiments and results.

Keywords:  HESML, Semantic measures library, Ontology-based semantic similarity 
measures, Information content models, SNOMED-CT, MeSH, Gene ontology, WordNet
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Background
The development of the gene ontology (GO) [1, 2] has given rise to many significant 
applications in genomics and proteomics derived from some significant findings that 
show the correlation of GO-based semantic similarity between genes and proteins 
with some biological phenomena. For instance, the pioneering work of Lord et al. [3] 
shows that protein sequence similarity is highly correlated with their corresponding 
GO-based semantic similarity, which suggests that GO-based similarity measures 
could be used as protein function prediction tools. Likewise, Freudenberg and Prop-
ping [4] show that GO-based similarity measures can be used for the prediction of 
disease-relevant genes, whilst Sevilla et al. [5] show that gene expression is correlated 
with GO-based semantic similarity, and Couto et al. [6, 7] show that there is a correla-
tion between the GO-based semantic similarity of proteins and their family similar-
ity based on the Pfam database. As a consequence of these aforementioned findings, 
a plethora of GO-based semantic similarity measures have been proposed during 
the last two decades [8–11] which are commonly evaluated in multiple benchmarks 
[12, 13] using some protein similarity proxies based on their sequence, structure, or 
common metabolic pathways. Other significant applications of GO-based similarity 
measures are the prioritization of disease gene candidates [14–16], protein cluster-
ing [17], network alignment of protein interaction networks [18], protein functional 
similarity [19], prediction of the molecular function of genes [20], and characteriza-
tion of human regulatory pathways [21]. For the reasons above, many software librar-
ies and tools implementing GO-based similarity measures have been proposed in the 
literature, such as follows: (1) online web tools such as FuSSiMeg [7, 22], G-SESAME 
[23, 24], FunSimMat [25, 26], Proteinon [27], DaGO-Fun [28], GOssTo [29] and Sem-
Sim [30]; (2) R-packages such as GOSim [31] and GOSemSim [32] among others; 
(3) Python libraries such as FastSemSim [9] and A-DaGO-Fun [33]; and finally, (4) 
the Java software library called SML [34], which provides an unified and standalone 
implementation of the most significant ontologies, in addition to set significantly the 
state-of-the-art for the family of GO-based libraries in terms of performance [34, 
table 1].

On the other hand, ontology-based semantic similarity measures [35, 36] have been 
extensively used to estimate the degree of similarity between concepts as perceived by 
a human being in many text mining and information retrieval (IR) applications, both 
in the general language domain [35] and the biomedical domain [37, 38]. For instance, 
ontology-based similarity measures based on Systematized Nomenclature of Medicine 
Clinical Terms (SNOMED-CT) ontology and the Medical Subject Headings (MeSH) 
thesaurus have been used in the definition or training of methods for biomedical sen-
tence similarity [39–41], word sense disambiguation [42], estimating the semantic simi-
larity between clinical terms [38] and concepts [43–46], inter-patient distance metrics 
[47], clinical text classification [48], classification of radiology reports [49], document 
clustering [50], retrieval of passage for biomedical question answering [51], and arti-
cle screening [52] among many other applications based on the Unified Medical Lan-
guage System (UMLS). In order to tackle all aforementioned applications, as well as the 
growing research interest on the topic, McInnes et  al. [53] introduce the first UMLS-
based semantic measure library reported in the literature, called UMLS::Similarity 
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(UMLS::Sim), which is implemented as a Perl library together with the standard MySQL 
database distribution of the UMLS [54] ontologies and vocabularies provided by cour-
tesy of the NLM.1

Main motivation and hypotheses

The main motivation of this work is to overcome some performance and scalability draw-
backs in current state-of-the-art semantic measures libraries for the biomedical domain 
in the fields of biomedical text mining and genomics. Despite the UMLS::Similarity has 
been extensively used in the literature, it has several significant drawbacks that pre-
vent its use in high-throughput standalone applications, such as a poor performance 
in the evaluation of measures, as well as a tedious, complex, and long setup process to 
build several pre-calculated data structures and values stored into an auxiliary database 
called UMLS::Interface. UMLS::Similarity drawbacks are mainly derived from its use of 
a scripting programming language like Perl and an ontology representation based on a 
relational database, which strongly impacts its performance and software architecture. 
More recently, Harispe et al. [34] introduce the SML Java software library implementing 
for the first time the most significant ontologies into a single library, such as WordNet 
[55], SNOMED-CT, MeSH, the Gene Ontology and any others based on the OBO [56] 
and OWL file formats. However, SML has several significant performance and scalability 
drawbacks derived from the use of a naive in-memory graph representation based on 
hash tables and caching, which significantly impacts its overall performance, and very 
especially, its computation of path-based measures and scalability regarding the ontol-
ogy size [57, Sect.  1.1.1]. To bridge the aforementioned drawbacks, Lastra-Diaz et  al. 
[57] introduce the HESML Java software library based on WordNet, together with a very 
efficient and linearly scalable taxonomy representation called PosetHERep that allows 
the former library outperforms SML by several orders of magnitude [57]. However, the 
field of biomedical research has not benefited yet from these aforementioned advances 
because previous HESML versions implement none of the most significant biomedical 
ontologies, such as SNOMED-CT, MeSH, GO, and others based on the OBO file for-
mat. Our main hypothesis is that the efficient and scalable in-memory representation 
for ontologies provided by HESML should solve these aforementioned performance and 
scalability drawbacks, as detailed in hypothesis 1 below.

Hypothesis 1  (H1) A HESML implementation of the main biomedical ontologies 
should significantly outperform the state-of-the-art biomedical semantic measures 
libraries in the evaluation of ontology-based semantic similarity measures, such as pre-
viously shown for WordNet ontology [57].

The second motivation of our work is to overcome a significant performance and scal-
ability drawback of all path-based semantic similarity measures, which prevents their 
use in high-throughput experiments, or any practical application demanding their real-
time computation. This problem is especially relevant because a recent reproducible 
survey on word similarity [58–60] shows that one hybrid IC-based similarity measure 
[35, coswJ&C] sets the state of the art in the family of ontology-based measures for the 

1  https://​www.​nlm.​nih.​gov/.

https://www.nlm.nih.gov/
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general domain. However, their practical use in any application is limited because of the 
lack of an efficient shortest-path algorithm for their real-time computation. Path-based 
similarity measures require an efficient implementation of any shortest-path algorithm, 
such as Dijkstra’s algorithm [61]; however, its computational complexity prevents its 
practical use in high-throughput applications based on large ontologies like SNOMED-
CT, GO or WordNet. A common strategy followed by most of the software libraries 
and tools to tackle the aforementioned problem is to pre-calculate some auxiliary data 
structures, or all pairwise similarity scores, with the aim of speeding-up the subsequent 
evaluation of any path-based measure, such as done by UMLS::Similarity, whilst other 
libraries like SML compute the path-based measures on-the-fly, and store the result-
ing similarity scores into a cache. The caching of auxiliary data structures and values 
demands large quantities of memory and complex setup processes, which neither tackle 
nor solve the main practical problem on the real-time computation of path-based meas-
ures at interactive rates, and lead to a poor performance, long setup processes, and run-
ning out of memory on large ontologies when they are used on average workstations. 
Our hypothesis on the aforementioned problem of performance and scalability of path-
based similarity measures is that a new approximated shortest-path algorithm, specifi-
cally designed for taxonomies, should overcome this problem, as detailed in hypothesis 2 
below.

Hypothesis 2  (H2) A new approximated shortest-path algorithm specifically designed 
for taxonomies could provide an efficient and linearly scalable method for reformulating 
and evaluating any path-based semantic similarity measure at interactive rates, whose 
similarity values would show a high-correlation value as regards its implementation 
using any exact shortest-path algorithm.

And finally, a third motivation is to provide a larger and most updated set of ontology-
based semantic similarity measures and Information Content (IC) models [58, 62] than 
those provided by UMLS::Similarity and SML libraries, as shown in Tables 2, 3, and 4 .

The aim of this work is to introduce an updated version of the HESML [57] library 
especially designed for the biomedical domain, called HESML V1R5 [63], together with 
a fast approximation of the Dijkstra’s algorithm [64] for taxonomies based on a relaxed 
graph spanner called Ancestors-based Shortest-Path Length (AncSPL), which allows 
for the first time the real-time computation of any path-based similarity measure on 
large ontologies, such as SNOMED-CT, GO, and WordNet. HESML V1R5 implements 
most of the ontology-based similarity measures and IC models reported in the litera-
ture as shown in Tables 2, 3 and 4, as well as a very efficient and scalable in-memory 
representation of WordNet [55], SNOMED-CT, MeSH, GO [1], and other ontologies 
based on the OBO file format [56]. We introduce a set of reproducible benchmarks for 
testing our main hypothesis (H1) by comparing the performance of HESML with the 
UMLS::Similarity and SML libraries on the three most significant biomedical ontolo-
gies, as well as several experiments for testing our second hypothesis (H2) as regards 
the new AncSPL algorithm. Finally, we introduce a reproducibility dataset [65] together 
with a detailed reproducibility protocol, which is provided as supplementary material 
(see Additional file 1) to allow the exact replication of all our experiments and results.
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Related work
This section briefly reviews the literature on semantic measures libraries and tools for 
the biomedical domain, as well as the family of approximated shortest-path algorithms 
based on graph spanners [66–68], which are related with HESML and our AncSPL 
algorithm.

Biomedical semantic measures libraries

The main ontologies used for biomedical text mining and information retrieval applica-
tions in health sciences are SNOMED-CT and MeSH, although there are many other 
ontologies2 based on the OBO file format [56]. Nowadays, there are only two seman-
tic measures libraries based on the two aforementioned ontologies as follows: (1) the 
pioneering Perl software library and online web interface called UMLS::Similarity [53], 
and (2) the most recent Java software library called SML [34], which introduces sev-
eral significant contributions, such as a portable and efficient object-oriented language 
programming, as well as a significant number of methods as shown in Tables 2, 3 and 
4, and the implementation for the first time of the most significant biomedical ontol-
ogies and WordNet into a single software library, as shown in Table 1. However, both 
UMLS::Similarity and SML have several significant performance and scalability draw-
backs previously detailed in the introduction which encourage our research in this work.

On the other hand, most early GO-based software libraries and tools have been imple-
mented as online web tools, such as FuSSiMeg [7, 22], G-SESAME [23, 24], FunSim-
Mat [25, 26], Proteinon [27], DaGO-Fun [28], GOssTo [29] and SemSim [30]. FuSSiMeg 
[22] introduces the first semantic similarity measure specifically designed for GO terms 
together with an online web tool for its evaluation, whilst Proteinon [27] provides the 
first online tool for evaluating GO-based protein semantic similarity. G-SESAME [23, 
24] provides a large set of online tools for measuring the semantic similarity between 
GO terms and the GO-based functional similarity between genes and proteins. FunSim-
Mat [25, 26] provides tools for GO-based protein functional similarity and disease gene 
prioritization. DaGO-Fun [28] web tool provides a rich set of GO-based similarity meas-
ures for GO terms, genes and proteins, as well as tools for the identification of gene and 

Table 1  Ontologies and thesaurus implemented by the three main semantic measures libraries for 
the biomedical domain

Ontology UMLS::Similarity SML HESML 

MeSH x x x

SNOMED x x x

WordNet x x

OBO file format x x

Gene Ontology x x

OWL file format x

RDF triples files x

2  http://​www.​obofo​undry.​org.

http://www.obofoundry.org


Page 6 of 31Lastra‑Díaz et al. BMC Bioinformatics           (2022) 23:23 

Table 2  Pairwise ontology-based semantic similarity measures implemented by the three main 
publicly available software libraries for the biomedical domain

(*) Real-time reformulation of all path-based measures based on the AncSPL algorithm

UMLS::
Similarity

SML HESML

Gloss-based measures

Banerjee and Pedersen [69] x

Patwardhan and Pedersen [70],
context vector

x

Path-based and taxonomy-based measures

Rada et al. [71] x x x*

Wu and Palmer [72] x x

Wu and Palmer [72] fast
(depth-based approximation)

x x

Leacock and Chodorow [73] x x x*

Stojanovic et al. [74] x x*

Maedche and Staab [75] x

Zhong et al. [76] x

Pekar and Staab [77] x x x*

Li et al. [78], strategy 3 x*

Li et al. [78], strategy 4 x*

Liu et al. [79], strategy 1 x*

Liu et al. [79], strategy 2 x*

Pedersen et al. [44],
reciprocal Rada

x x*

Al-Mubaid and Nguyen [80] x x*

Kyogoku et al. [81] x

Batet et al. [45] x

Hao et al. [82] x*

Hadj Taieb et al. [83], sim1 x

Hadj Taieb et al. [83], sim2 x

McInnes et al. [84], U-path x

IC-based measures

Resnik [85] x x x

Jiang and Conrath [86] x x x

Lin [87] x x x

Schlicker et al. [88] x x

Pirró and Seco [89] x

FaITH [90] x x

Garla and Brandt [91] x

Meng and Gu [92] x

Gao et al. [93], strategy 3 x

Lastra&García [35], cosJ&C x

Cai et al. [94], strategy 2 x

Hybrid IC-based measures

Li et al. [ [78] strategy 9 x*

Zhou et al. [95] x*

Meng et al. [96] x*

Gao et al. [93], strategy 3 x*

Lastra and García [35], coswJ&C x*

Lastra and García [35], weigthedJ&C x*

Cai et al. [94], strategy 1 x*

Feature-based measures

Sánchez et al. [97] x x
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protein candidates for diseases, and tools for gene and protein clustering among others. 
GOssTo [29] is an online web tool for measuring GO-based similarity between organ-
isms, which implements six similarity measures and it is also distributed as a standalone 
program based on Java together with an API for developers. SemSim [30] is a web tool 
which introduces several tools for measuring GO-based similarity between genes and 
organisms, as well as predicting gene and protein GO annotations, in addition to provid-
ing programmatic access to its functionality via Web services. We also find a standalone 
software called DynGO [98] and other standalone software libraries distributed as 
R-packages, such as GOSim [31], SemSim [99], GOStats [100], csbl.go [101],  and GOS-
emSim [32]; Python libraries such as FastSemSim [9] and A-DaGO-Fun [33]; and finally, 
the aforementioned Java software library called SML [34] which sets the state-of-the-art 
for the family of GO-based libraries in terms of performance [34, Table 1]. Finally, Le 
[102] recently introduces a Cytospace [103] app called UFO, which implements a col-
lection of semantic similarity measures and enrichment tools for biomedical ontologies 
based on the OBO file format.

Shortest‑path algorithms based on graph spanners

Our new AncSPL shortest-path algorithm for taxonomies provides an approximated 
solution for the Single-Source Shortest-Path (SSSP) problem whose aim is to find the 
shortest-path from a single vertex to the rest of vertexes in a graph. The AncSPL algo-
rithm belongs to the family of approximation methods based on sub-graphs, and it is 
closely related to the methods based on graph spanners whose core idea is to build a 
simplified version G′ = (V ,E′) of a weighted graph G = (V ,E) whose shortest-path 
distance function satisfies an upper error bound a priori. For this reason, this section 
focuses on graph spanners. For a comprehensive review of the literature on shortest-
path algorithms, we refer the reader to the surveys by Sommer [122], Madkour et  al. 
[123], and Zwick [124].

Table 3  Groupwise ontology-based semantic similarity measures implemented by SML and HESML 
(this work), which are mainly used for genomics applications based on the GO ontology

Groupwise similarity measures SML HESML

Maximum [5, formula 2] x

Average [104, formula 1] x

Best-Match-Average
(BMA) [104, formula 2]

x

SimUI [100] x x

SimLP [100] x x

SimGIC [105] x x

Ali and Deane [18] x

Lee et al. [106] x

Term Overlap (TO) [107] x

Normalized Term
Overlap (NTO) [107]

x

NTO_MAX [107] x
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Graph spanners are pioneering by the works of Peleg and Schaffer [66] and Althofer 
et  al. [67], whilst the current state-of-the-art spanner construction algorithm is intro-
duced by Elkin and Solomon [68]. Given a graph G = (V ,E) , a sub-graph G′ = (V ,E′) is a 
t-spanner if for every vertex pair u, v ∈ V  the distance in the sub-graph dG′(u, v) is at most 
t times longer than the distance dG(u, v) in G, such that ∀u, v ∈ V , dG′(u, v) ≤ t · dG(u, v) . 
Spanner-based algorithms are based on well-founded theoretical results in graph theory, 
in addition to be of great practical value in many scenarios. However, they have two draw-
backs in the context of our problem as follows. On the one hand, graph spanners have a 
high complexity derived from the need for computing a spanning graph considering all 
graph vertexes, and on the other hand, they do not take advantage of the knowledge of 
the graph structure in special cases such as the single-root taxonomies considered herein. 
Elkin and Solomon [68] point that “the only algorithms for constructing sparse and light-
weight spanners for general graphs admit high running times”. Precisely, we propose 

Table 4  Information Content models implemented by the main publicly available software libraries 
for the biomedical domain

IC models UMLS ::Similarity SML HESML

Corpus-based IC models

Resnik [85, 108] x x x

CPCorpus [62], CPCorpus x

CPRefCorpus [109], x

Intrinsic IC models

Seco et al. [110] x x x

Blanchard et al. [111], ICg x

Zhou et al. [112] x x

Sebti and Barfroush [113] x

Sánchez et al. [114] x x x

Sánchez and Batet [115] x

Meng et al. [116] x

Harispe et al. [34] x x

Yuan et al. [117] x

Hadj Taieb et al. [118] x

Adhikari et al. [119] x

Ben Aouicha and Hadj Taieb [120] x

Ben Aouicha et al. [121] x

CondProbHyponyms [62] x

CondProbUniform [62] x

CondProbLeaves [62] x

CondProbCosine [62] x

CondProbLogistic [62] x

CondProbRefHyponyms [62] x

CondProbRefUniform [62] x

CondProbRefLeaves [62] x

CondProbRefCosine [62] x

CondProbRefLogistic [62] x

CondProbCosineLeaves [62] x

CondProbRefLogistic-Leaves [62] x

CondProbRefLeaves-SubsumerRatio [62] x
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AncSPL to take advantage of the intrinsic structure of the single-root taxonomies to pro-
vide an efficient approximation SSSP algorithm.

Implementation
This section is divided into two parts as follows. First part introduces the new seman-
tic measures library for the biomedical domain, called HESML V1R5, whilst the second 
part introduces a real-time algorithm for the computation of the shortest-path between 
concepts in large ontologies, called AncSPL, whose performance and approximation 
quality are tested in our experiments.

The new semantic measures library

HESML V1R5 is a new version of the HESML [57] open-source Java software library 
that extends its applicability to the biomedical domain by implementing the SNOMED-
CT, MeSH, GO [1, 2], and OBO file format ontologies [56], in addition to WordNet [55]. 
HESML V1R5 is a self-contained Java software library of pairwise and groupwise ontol-
ogy-based semantic similarity measures, and information content (IC) models, which 
also supports the evaluation of pre-trained word embedding models in three different 
file formats. The core innovation of HESML is a very efficient and linearly scalable in-
memory representation for taxonomies, called PosetHERep, which was introduced in 
the first version of HESML [57] based on WordNet. PosetHERep is mainly responsible 
for the real-time performance and scalability with low memory consumption shown by 
HESML. PosetHERep converts HESML V1R5 into the most efficient, scalable, and port-
able semantic measures library reported in the literature, as shown by the benchmarks 
based on WordNet and large synthetic ontologies reported in [57], and the benchmarks 
on biomedical ontologies evaluated in this work. For more information on the data 
structures and algorithms of the PosetHERep representation model, we refer the reader 
to [57, Sect. 3.2].

HESML V1R5 implements the largest set of pairwise ontology-based semantic meas-
ures and IC models reported in the literature, as shown in Tables 2 and 4 respectively. 
However, this first version of HESML for the biomedical domain does not include some 
specific GO-based pairwise and groupwise similarity measures which will be included 
in forthcoming versions. Likewise, HESML V1R5 provides for the first time real-time 
reformulations for most of the path-based and hybrid IC-based measures reported in 
the literature, which are based on the new AncSPL shortest-path algorithm introduced 
herein.

HESML V1R5 is a self-contained evaluation and experimentation platform on word 
and concept similarity and relatedness, which is especially well suited to run large 
experimental surveys by supporting the execution of automatic reproducible experi-
ment files based on different XML-based file formats. Despite HESML V1R5 imple-
ments the most significant ontologies reported in the literature, it could also be easily 
extended to manage other ontology file formats, such as OWL or RDF files, by imple-
menting the proper parsers as detailed in [57]. HESML V1R5 library has been com-
pletely developed in NetBeans 8 and Java 8, being distributed with three WordNet 
versions and GO. HESML V1R5 integrates some complementary Java console pro-
grams shown in turquoise blue boxes in Fig. 1, which use the HESML core library to 
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run reproducible experiments and evaluate the semantic similarity between words, 
UMLS concepts, or GO terms and GO annotation sets (genes and proteins) which are 
based on WordNet, SNOMED-CT or MeSH, and GO.

HESML Software Architecture. Figure 1 shows a concept map detailing the HESML 
V1R5 architecture. The core HESML component is the half-edge taxonomy repre-
sentation (PosetHERep) defined by the yellow entities within the largest box in yel-
low. Red entities in the block entitled ‘Similarity measures & IC models’ represent 
the interfaces that should be implemented to define new methods, such as general 
groupwise (IGroupwiseSimilarityMeasure) or pairwise (ISimilarityMeasure) simi-
larity measures, word similarity measures (IWordSimilarityMeasure) including pre-
trained word embedding models, or new IC models (ITaxonomyInfoConfigurator). 
Every type of ontology is implemented by a specific collection of Java classes and 
interfaces which holds a ITaxonomy object to represent its corresponding ontology, 
such as the ISnomedCtOntology, IMeSHOntology, IOboOntology and IWordNetDB 
interfaces shown in Fig.  1. All the HESML objects are provided as Java interfaces, 
being instanced by factory objects not represented in the figure above. For a detailed 

Fig. 1  HESML V1R5 architecture showing the main functional blocks and abstract interfaces. Boxes in yellow 
show main abstract objects and interfaces contained in the HESML library, whilst boxes in turquoise blue 
show main HESML client programs, whose aim is to evaluate semantic similarity measures implemented in 
HESML on the SNOMED-CT, MeSH, GO, and WordNet ontologies
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introduction to the software architecture, PosetHERep, and main algorithms of 
HESML, we refer the reader to its introductory paper [57], and the HESML web 
page.3

Current methods implemented by HESML. Table  1 shows the ontologies and ontol-
ogy-based file formats implemented by the three main semantic measures libraries for 
the biomedical domain evaluated herein, whilst Tables  2,  3, and 4 shows the pairwise 
and groupwise ontology-based semantic similarity measures, and the IC models, imple-
mented by the aforementioned software libraries respectively. Finally, Table  5 shows 
a collection of pre-trained word embedding models which were evaluated in a large 
benchmark [58] on word similarity using three new HESML classes called EMBWor-
dEmbeddingModel, UKBppvWordEmbeddingModel and NasariWordEmbeddingModel 
respectively, which implement the evaluation of the (*.emb), (*.ppv) UKB [125] and 
Nasari [126] word vector file formats. Thus, HESML is able to evaluate both semantic 
similarity measures based on any ontology shown in Table 1 and recent word embedding 
models in a common software platform.

Extending the HESML functionality. HESML can be extended in different directions 
by developing new features as follows: (1) further pairwirse or groupwise semantic 
similarity measures; (2) further IC models; (3) further ontology parsers for unimple-
mented ontology file formats; (4) further evaluators for unimplemented pre-trained 
word embedding models or file formats; (5) further client programs dealing with specific 
ontologies; and (6) further new tools based on ontology-based semantic similarity meas-
ures, such as gene clustering and other gene enrichment tools, or sentence similarity 
measures among many other text mining applications. For instance, in order to develop 
any new similarity measure, you should develop a class, which implements the appro-
priate interface, by following any of the multiple source code examples in the library, 
then the reader should include its creation in its corresponding factory function in the 
class MeasureFactory. In order to develop any new IC model, the reader should develop 

Table 5  Collection of pre-trained word embedding (WE and WEC) models and ontology-based 
vector models (OVM) evaluated in a previous series of experiments [58–60] by using the Java classes 
implementing their evaluation

First column details which methods use WordNet during their training

WN Family Word embedding model

Yes WEC Attract-repel [127]

No WE FastText [128]

No WE GloVe [129]

No WE CBOW [130]

Yes WEC SymPatterns (SP-500d) [131]

No WEC Paragram-ws [132]

No WEC Paragram-sl [132]

Yes WEC Counter-fitting (CF) [133]

Yes OVM WN-RandomWalks [134]

Yes OVM WN-UKB [125]

Yes OVM Nasari [126]

3  http://​hesml.​lsi.​uned.​es.

http://hesml.lsi.uned.es
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a class implementing the ITaxonomyInfoConfigurator by deriving from AbstractICmodel 
class. Finally, HESML source code is clear and well documented, thus the readers will 
find a lot of source code examples to learn the HESML basics on its use and extension. 
In addition, the readers can subscribe to the HESML community forum, or contact the 
authors, as detailed in the availability section.

The new shortest‑path algorithm for taxonomies

Our new shortest-path algorithm for taxonomies, called ancestors-based shortest-path 
length (AncSPL), is a fast approximation of the Dijkstra’s algorithm that is based on a 
min-priority queue implementation [61] constrained to a sub-graph derived from the 
ancestor sets of the source and target concepts. AncSPL uses an exact shortest-path 
algorithm that runs on the sub-graph derived from the ancestor sets by ignoring those 
edges connecting to any node not belonging to the sub-graph; thus, AncSPL does not 
require any graph transformation or auxiliary data structure. Implementation of the 
Dijkstra’s algorithm in HESML is very efficient because PosetHERep [57] allows travers-
ing any taxonomy in linear time as regards the number of edges. In addition, the AncSPL 
algorithm is easy to implement, all topological queries required are efficiently computed 
by HESML and it does not require any complex auxiliary data structure or preprocessing 
as required by the most of approximated SSSP methods for general graphs.

Given a single-root taxonomy C = (C ,≤C ,Ŵ) , where (C ,≤C) is a partially ordered 
set, and Ŵ ∈ C is a distinguished supreme element called the root, such that 
∀ci ∈ C → ci ≤C Ŵ . The core idea and underlying hypothesis of our AncSPL algorithm 
is that given two randomly selected taxonomy nodes ci, cj ∈ C , most of the shortest 
paths between them will be contained in a set defined by the union of their ancestor sets. 
Our aforementioned underlying hypothesis is always true on any tree-like taxonomy, 
such as MeSH, in whose case we can use a direct, exact, and linearly scalable formula 
(line 5, Algorithm 1) to compute the length of the shortest path. However, this later for-
mula is not exact for general taxonomies with multiple inheritance, such as WordNet, 
SNOMED-CT, and GO.

Our new AncSPL algorithm is detailed in Algorithm  1 box. PosetHERep represen-
tation [57] implemented by HESML allows that all topological queries involved in the 
implementation of AncSPL can be efficiently computed in linear time as regards each 
node depth value, such as the computation of the lowest common subsumer (LCS) con-
cept, concept depth, and ancestor sets. For this reason, the combination of fast topo-
logical queries provided by HESML together with a large graph reduction based on the 
ancestor sets allows getting a very efficient approximation of the exact value for the 
length of the shortest path between concepts in any non-tree-like taxonomy. Finally, we 
refer the reader to the Vertex.getFastShortestPathDistanceTo() method in HESML V1R5 
[63] to see our current implementation of AncSPL. Likewise, we provide the defini-
tion of the LCS function used in step 5 of AncSPL, and the HESML min-priority queue 
implementation of the Dijkstra’s algorithm in Algorithm 2 and 3 boxes, respectively.

Approximation error of AncSPL. The shortest-path length estimated by AncSPL is always 
greater or equal than the exact value, it means that let be spl(c1, c2) the exact length value 
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between concepts c1 and c2 , then AncSPL(c1, c2) ≥ spl(c1, c2) for any concept pairs in any 
’is-a’ taxonomy, as shown in Fig. 2 for SNOMED-CT, GO, and WordNet ontologies, respec-
tively. Consequently, the AncSPL reformulation of any path-based similarity measure will 
always return a less or equal similarity value than their corresponding exact version. On 
the other hand, AncSPL(c1, c2) will be equal to spl(c1, c2) when either the shortest path 
between both concepts is contained in the common ancestor set or the taxonomy is a tree. 
Thus, any AncSPL reformulation will return the same value that the original path-based 
measure in these latter cases, and for tree-like taxonomies as MeSH, any AncSPL reformu-
lation will be exact for any concept pair by definition. 

Time complexity of the AncSPL algorithm

AncSPL uses two different methods to compute the length of the shortest path between 
concepts as follows: (1) an exact method for tree-like taxonomies defined in step 5 of Algo-
rithm 1, which is based on the LCS function detailed in Algorithm 2; and (2) a min-priority 
queue implementation of the Dijkstra’s algorithm constrained to the ancestors-based sub-
graph defined in steps 7–14 of Algorithm 1, which is based on the efficient PosetHERep 
representation introduced by HESML [57] and a Java PriorityQueue object, as detailed in 
Algorithm 3. 
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The Java PriorityQueue class uses a priority heap whose time complexity is O(log(n)) 
for the insertion (add) and poll operations, and O(n) for the remove operation, as 
pointed out in its user’s documentation.4 Thus, the time complexity of the AncSPL algo-
rithm detailed in Algorithm 1 box can be elucidated by directly inspecting the auxiliary 
function and procedure detailed in Algorithm 2 and 3 boxes, respectively. 

Theorem  1  Let be a single-root taxonomy C = (C ,≤C ,Ŵ) , where (C ,≤C) is a par-
tially ordered set, and Ŵ ∈ C is a distinguished supreme element called the root, such 
that ∀ci ∈ C → ci ≤C Ŵ , and let be (Gij ⊂ C ,≤C ,Ŵ) a sub-taxonomy of C made up by 

4  https://​docs.​oracle.​com/​javase/​7/​docs/​api/​java/​util/​Prior​ityQu​eue.​html.

https://docs.oracle.com/javase/7/docs/api/java/util/PriorityQueue.html
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the common ancestor set of concepts ci, cj ∈ C , such that Gij = AncSet(ci)
⋃

AncSet(cj) , 
where AncSet(x) = {c ∈ C , x ≤C c} . Then, the time complexity of the AncSPL algorithm is 
linear in the dimension of the sub-taxonomy with O(N), being N = |Gij| the dimension of 
the common ancestor-based sub-taxonomy Gij.

Proof  There are two cases and workflows for the execution of AncSPL depending on 
the input taxonomy is tree-like (case 1) or not (case 2). Thus, time complexity of AncSPL 
denoted by TCAncSPL will be equal to the time complexity of the Algorithm 2 ( TC2 ) or the 
Algorithm 3 ( TC3 ) as proven below.

(Case 1) For tree-like taxonomies processed in step 5, AncSPL evaluates the sorthest-
path length by computing the distance to the Lowest Common Subsummer (LCS) using 
the Algorithm 2 whose time complexity can be computed as follows: 

1:	 Steps 2–3 takes 2 operations in constant time k1.
2:	 Ancestor sets in steps 4–5 can be obtained either in 2 operations in constant time 

k2 if they are cached, or O(k3N ) otherwise by retrieving the ancestor nodes using 
PosetHERep [57], where N = |AncSet(ci)| ≤ |Gij| is the number of ancestors of ci.

3:	 Loop in steps 6–11 is executed N times.
3.1:	 Step 7 takes 3 operations in constant time k4.
3.2:	 Steps 8–9 take 2 operations in constant time k5.

Thus, summing the overall time consumed by all steps detailed above, and consider-
ing that the ancestor sets can be cached, time complexity of Algorithm 2 is as follows:

(Case 2) For non-tree-like taxonomies processed by the else-branch in step 6, AncSPL 
computes the shortest-path length using the Algorithm 3 with the sub-taxonomy Gij as 
input. Thus, let be N = |Gij| the number of common ancestor nodes, then its time com-
plexity can be computed as follows: 

1:	 Steps 2–5 takes exactly N + 1 operations in constant time k1 , it means O(k1(N + 1)) 
time.

2:	 Steps 6–7 takes 2 operations in constant time k2
3:	 Traversing loop in steps 8–25 is executed N times.
3.1:	 Step 9 requires O(log(n)) time, being n the current item count stored within the 

priority queue. However, in step 9, the queue mainly stores the adjacent nodes of 
the last visited node in each iteration. Thus, the time will be O(k3log(ĒGij ) in aver-
age, where ĒGij is the average number of adjacent nodes per ancestor for each node 
ci ∈ Gij.

3.2:	 Loop in steps 12–24 is executed Ej
Gij

 times ∀cj ∈ Gij , where Ej
Gij

 is the number of 

adjacent nodes of cj contained in the sub-taxonomy Gij.

TC2 =

{

O(k1 + k2 + (k4 + k5)N ) = O(kN ), if cached

O(k1 + (2k3 + k4 + k5)N ) = O(kN ), otherwise



Page 16 of 31Lastra‑Díaz et al. BMC Bioinformatics           (2022) 23:23 

3.2.1:	 Step 14 takes 1 operation in constant time k4.
3.2.2:	 Steps 15–18 takes constant time k5.
3.2.3:	 Step 19 takes O(n) time for removing the visited node a, being n the current item 

count stored within the queue. However, using the same argument provided in step 
3.1 above, the time will be O(k6ĒGij ) in average.

3.2.4:	 Step 20 requires O(log(n)) time for inserting the visited node a, but using the 
same argument above, the time will be O(k7log(ĒGij )) in average.

3.2.5:	 Step 23 takes 2 operations in constant time k8

Thus, summing the overall time consumed by all steps of Algorithm  3 detailed 
above, its time complexity (TC3) is:

because ∀x ≥ 2 ⇒ x2 >> xlog(x) > log(x) we can approximate TC3 as follows:

� �

Corollary 1  Let be a single-root taxonomy C = (C ,≤C ,Ŵ) as defined in theorem above, 
ci, cj ∈ C two arbitrary distinct concepts, ĒC is the average number of adjacent nodes 
∀c ∈ C , and Nmax is the maximum number of ancestor nodes for any concept ci ∈ C . 
Then, the time complexity ( TCAncSPL ) is upper bounded as follows:

Proof  The proof of the corollary follows directly from the proof of the theorem above. 
� �

The dimensions of the largest ancestor sets (Nmax) for the ontologies evaluated 
herein are as follows: NSND

max = 129 , NGO
max = 98 , NMSH

max = 14 , and NWN
max = 35 . The per-

formance of AncSPL is much higher on MeSH than the remaining ontologies because, 
on the one hand, its Nmax value is significantly lower than the corresponding value of 
the remaining ontologies, and on the other hand, the AncSPL time complexity is 
much lower for tree-like ontologies than for non-tree-like ones because TC2 linearly 
depends on kN, whilst TC3 depends on kĒ2

Gij
N  . Thus, the intrinsic feature Ē2

Gij
 scales 

the time complexity of AncSPL on non-tree-like ontologies, as shown in Fig. 3.

TC3 = O(k1(N + 1)+ k2 + N (k3log(ĒGij )

+ ĒGij (k4 + k5 + k6ĒGij + k7log(ĒGij )+ k8)))

= O(k1(N + 1)+ k2 + N (k3log(ĒGij )

+ k9ĒGij + k6Ē
2
Gij

+ k7ĒGij log(ĒGij )))

TC3 = O((k1 + kĒ2
Gij

)N + k1 + k2)

= O((k1 + kĒ2
Gij

)N + k ′)

= O(kĒ2
Gij

N )

TCAncSPL ≤

{

kNmax, C is tree-like

kĒ2
CNmax, otherwise
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Reformulating any path‑based similarity measure

Any path-based semantic similarity or distance measure can be reformulated using 
the AncSPL algorithm by substituting the call to the function spl computing the exact 
length of the shortest path between concepts by a call to the AncSPL function. For 
example, formulas (1–2) show the AncSPL reformulation of the reciprocal Rada et al. 
distance [71], called simpath [44], whilst formulas (3–4) show the reformulation of the 
Leacock-Chodorow [73] similarity measure.

Results
This section introduces a series of reproducible experiments whose main goals are as 
follows: (1) to test our main hypothesis H1 by evaluating and comparing the perfor-
mance of the new HESML V1R5 library with the state-of-the-art biomedical semantic 
measure libraries based on the main biomedical ontologies; and (2) to test our sec-
ond hypothesis H2 on the new AncSPL shortest-path algorithm introduced in this 
work. All experiments reported herein were implemented in an Ubuntu 20.04 desk-
top based on one AMD Ryzen 7 5800x CPU (16 cores) with 64 Gb RAM and 2TB Gb 
SSD disk. Likewise, we provide a very detailed reproducibility protocol and dataset as 

(1)simpath(c1, c2) =
1

1+ spl(c1, c2)

(2)simAncSPL−path(c1, c2) =
1

1+ AncSPL(c1, c2)

(3)simL&C(c1, c2) = −log

(

1+ spl(c1, c2)

2× maxDepth

)

(4)simAncSPL−L&C(c1, c2) = −log

(

1+ AncSPL(c1, c2)

2×maxDepth

)

Table 6  Average speed in CUI concept pairs per second (pairs/s)  for the evaluation of random 
CUI pairs with three representative ontology-based similarity measures based on the SNOMED-CT 
US 2019AB ontology (357,406 nodes) implemented by the three UMLS-based semantic measures 
libraries reported in the literature

Best performing values are shown in bold. Non-implemented methods (–) or more than 1 h/pair (xxx). UMLS::Similarity uses 
caching for the shortest path computations. The number of random CUI pairs evaluated to measure each value is shown 
between parentheses

Similarity measure UMLS::Similarity SML HESML
Avg. speed (pairs/s) Avg. speed (pairs/s) Avg. speed (pairs/s)

Rada [71] 0.122 (15) xxx 0.041 (15)

AncSPL-Rada
(this work)

– – 30110 (107)

Lin-Seco [87, 110] 0.744 (500) 202160 (107) 491942 (107)

Wu-Palmerfast [72] 0.035 (15) – 435252 (107)



Page 18 of 31Lastra‑Díaz et al. BMC Bioinformatics           (2022) 23:23 

Table 7  Average speed in CUI concept pairs per second (pairs/s) for the evaluation of random CUI 
pairs with three representative ontology-based similarity measures based on the MeSH ontology 
(Nov, 2019. 59,747 nodes) implemented by the three UMLS-based semantic measures libraries 
reported in the literature

Best performing values are shown in bold. Non-implemented methods (–). The number of random CUI pairs evaluated to 
measure each value is shown between parentheses

Similarity measure UMLS::Similarity SML HESML
Avg. speed (pairs/s) Avg. speed (pairs/s) Avg. speed (pairs/s)

Rada [71] 30.43 (15) 0.096 (15) 644729(107)
AncSPL-Rada
(this work)

– – 705189(107)

Lin-Seco [87, 110] 140.82 (500) 532913(107) 824307(107)
Wu-Palmerfast [72] 21.34 (15) – 717535(107)

Table 8  Average speed in GO concept pairs per second (pairs/s)  for the evaluation of two 
representative ontology-based similarity measures based on the Gene Ontology [1, 2] (2020-05-02 
version, 44509 nodes)) implemented by state-of-the-art SML [34] library and HESML

Best performing values are shown in bold. The number of random GO concept pairs evaluated to measure each value is 
shown between parentheses

Similarity measure Measure type SML HESML
Avg. speed
(pairs/s)

Avg. speed
(pairs/s)

Rada [71] Edge-counting 0.077 (20) 3.217 (20)

AncSPL-Rada
(this work)

Edge-counting – 140422 (107)

Lin-Seco [87, 110]
IC model

IC-based 372140 (107) 1063219 (107)

Table 9  Average speed in sentence pairs per second (sent/s) and CUI pairs per second (CUIs/s) for 
the evaluation of the UBSM [39] sentence similarity measure combined with three representative 
ontology-based similarity measures based on MeSH (Nov, 2019) in 30 sentence pairs extracted from 
the MedSTS [135] sentence similarity dataset, and 1 million sentence pairs extracted from BioC 
corpus [136]

We provide the average evaluation in normalized CUI pairs per second to allow a fair and unbiased comparison of the 
results reported for 30 and 1 million sentence pairs. The dataset with 30 sentence pairs requires 2491 pairwise CUI 
comparisons, whilst the 1 million sentence pairs dataset requires 42324534 pairwise CUI comparisons. Best performing 
values are shown in bold. Non-implemented methods (–)

Pairwise 
sentence 
comparison 
based on 
MeSH

UMLS::Sim (30 pairs) SML (30 pairs) HESML (30 pairs) HESML (106 pairs)

Similarity 
measure

Avg. speed
(sent/s)

Avg. speed
(CUIs/s)

Avg. speed
(sent/s)

Avg. speed
(CUIs/s)

Avg. speed
(sent/s)

Avg. speed
(CUIs/s)

Avg. speed
(sent/s)

Avg. speed
(CUIs/s)

Rada et al. 
[71]

0.441 36.63 0.126 10.478 2830.189 235000 7982.222 337843.826

AncSPL-Rada
(this work)

– – – – 2542.373 211101.695 7958.742 336850.041

Lin-Seco [87, 
110]

0.782 64.956 2586.207 214741.379 3125 259479.167 8166.185 345629.98

Wu-
Palmerfast 
[72]

0.181 15.067 – – 3125 259479.167 7892.959 334065.805
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supplementary material to allow the exact replication of all experiments and results 
introduced herein (see Aditional file 1).

Evaluation of HESML performance. We compare the performance of HESML V1R5 
with UMLS::Similarity 1.47 and SML 0.9 libraries, which are the only publicly available 
semantic measures libraries for SNOMED-CT and MeSH, whilst SML is also the best 
performing semantic measures library based on GO (see [34, Table 1]). First, we evaluate 
the average speed of each library, measured in concepts by second, in the evaluation of 
the semantic similarity of a sequence of randomly generated pairs of UMLS or GO con-
cepts using the SNOMED-CT, MeSH, and GO ontologies as shown in Tables 6, 7 and 8 
respectively. Next, we evaluate the average speed of each library, measured in sentences 
by second as shown in Table 9, in the evaluation of the similarity of a subset of 30 sen-
tence pairs extracted from the MedSTS [135] sentence similarity benchmark, and 1 mil-
lion sentence pairs extracted from the BioC corpus [136], by implementing the UBSM 
[39] sentence similarity measure in combination with some ontology-based semantic 
similarity measures based on MeSH. Table 9 also reports the average speed measured 
in UMLS Concept Unique Identifier (CUI) pairs per second to compare the results 
reported for the evaluation of either 30 sentence pairs or 1 million.

Selection of ontology-based similarity measures. We use the Rada et al. [71], Lin [87] 
and Wu and Palmer [72] similarity measures as a common representative sample to eval-
uate the performance of the three aforementioned libraries in all our experiments. How-
ever, we exclude the evaluation of the Wu-Palmer measure for the SML library because 
it does not provide the same depth-based version implementation than HESML or 
UMLS::Similarity. We selected these three similarity measures mentioned above because 
of several reasons. Firstly, they are implemented by the three libraries analyzed herein, as 
shown in Table 2. Secondly, Rada et al. measure is a good representative for the family 
of path-based similarity measures, whilst Lin and Wu-Palmer measures are good rep-
resentatives for the families of similarity measures based on IC models and taxonomic 
features, respectively. Third, these three later measures allow evaluating the HESML 
performance in three graph-based algorithms used by most of ontology-based similar-
ity measures as follows: (1) the computation of the length of the shortest path between 
concepts; (2) the computation of the Most Informative Common Ancestor (MICA) con-
cept; and (3) the Lowest Common Subsumer (LCS) concept. Fourth, IC-based measures 
based on a single computation of the MICA concept will exhibit the same performance, 
such as the measures by Resnik [85], Lin [87], and Jiang-Conrath [86], whilst all path-
based using a single computation of the length of the shortest path between concepts 
will also share the same performance. Finally, current authors showed theoretically [109, 
Table 3] and experimentally that many ontology-based similarity measures reported in 
the literature are based on monotone transformations or reformulations of other path-
based or IC-based measures. For all the reasons above, the performance results reported 
herein could be extrapolated to other similar measures based on the same set of graph-
based algorithms.

Experimental setup. All our experiments were generated by running a Java console 
program called HESML_UMLS_benchmark on a Docker container based on UBUNTU 
20.04, as detailed in Appendix A (see Additional file 1), which is provided as supplemen-
tary material [65] to allow the exact replication of all experiments and results introduced 
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herein. Because there are large differences in the average speed of each library, espe-
cially UMLS::Similarity, we used a different number of concept pairs (samples) per 
library from the same randomly-generated sequence of UMLS concept (CUI) pairs. Our 
reproducibility dataset [65] also provides the raw data files obtained in three runs of our 
experiments. All experiments reported herein are based on HESML V1R5.0.2 release, 
which is publicly available at HESML GitHub repository5 and its permanent dataset [63].

Testing our hypothesis for the AncSPL algorithm. Concerning the new AncSPL algo-
rithm, we include the evaluation of the AncSPL-Rada reformulation of the Rada et al. 
[71] measure in Tables 6, 7, 8 and 9 to compare the performance of the AncSPL-based 
measures with that obtained by their exact implementations. Finally, to test the second 
part of our hypothesis H2 on the approximation quality of our AncSPL algorithm, we 
evaluate the Pearson and Spearman correlation values between the similarity values 
returned by a set of path-based similarity measures for 50, 100, 200, and 1000 random 
CUI pairs in SNOMED-CT, GO, and WordNet non-tree-like ontologies and those values 
returned by their reformulation based on the AncSPL algorithm, as shown in Table 10.

Approximation error of AncSPL. To analyze the absolute approximation error made by 
AncSPL in the estimation of the exact shortest-path length on non-tree-like ontologies, 
Fig. 2 shows the cumulative distribution function (CDF) for a set of random samples of 

Table 10  This table shows the Pearson (r) and Spearman ( ρ ) correlation values between the 
similarity values returned by a set of path-based similarity measures and those values returned by 
their reformulation based on the new AncSPL algorithm for a sequence of 1000 random CUI pairs in 
SNOMED-CT 2019AB, GO (2020-05-02), and WordNet 3.0

We show the results obtained in the evaluation of the first 50, 100, 200, and 1000 random CUI pairs. All similarity measures 
are implemented in HESML V1R5 [63]. CoswJ&C [35] sets the current state-of-the-art in the family of ontology-based 
semantic similarity measures based on WordNet [58]. We define the tree-like deviation ( tree-likeσ ) below as the ratio of 
nodes with multiple parents regarding the overall number of ontology nodes. The tree-like deviation is 0 for MeSH, whilst it 
is (2213/82115) for WordNet 3.0, (151916/357406) for SNOMED-CT, and (19680/44509) for GO

Base measure AncSPL 
reformulation

50 samples 100 samples 200 samples 1000 samples

r ρ r ρ r ρ r ρ

Correlation values in SNOMED-CT ( tree-likeσ = 0.425)

 Rada [71] AnsSPL-Rada 0.9214 0.9412 0.9413 0.9444 0.9357 0.9352 0.9231 0.9217

 Leacock and 
Chodorow [73]

AnsSPL-Leacock 0.9409 0.9412 0.9479 0.9444 0.9422 0.9352 0.9217 0.9217

 coswJ&C [35] AnsSPL-coswJ&C 0.9136 0.9506 0.9583 0.9747 0.9761 0.9775 0.941 0.9714

Correlation values in GO ( tree-likeσ = 0.446)

 Rada [71] AnsSPL-Rada 0.8571 0.8277 0.9133 0.9085 0.8883 0.8868 0.9074 0.8947

 Leacock and 
Chodorow [73]

AnsSPL-Leacock 0.8542 0.8277 0.9109 0.9085 0.9007 0.8868 0.9191 0.8947

 coswJ&C [35] AnsSPL-coswJ&C 0.9679 0.9848 0.9372 0.9894 0.9654 0.9888 0.9533 0.977

Correlation values in WordNet ( tree-likeσ = 0.0269)

 Rada [71] AnsSPL-Rada 0.9072 0.8882 0.9151 0.8855 0.9225 0.8994 0.9168 0.9038

 Leacock and 
Chodorow [73]

AnsSPL-Leacock 0.9354 0.8882 0.9375 0.8855 0.937 0.8994 0.9345 0.9038

 coswJ&C [35] AnsSPL-coswJ&C 0.9993 0.9906 0.998 0.9916 0.9644 0.9859 0.9815 0.9807

5  https://​github.​com/​jjlas​tra/​HESML.

https://github.com/jjlastra/HESML
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the signed shortest-path length error measured in number of edges in SNOMED-CT, 
GO, and WordNet.

Testing the AncSPL time complexity. To test experimentally the time complexity of 
AncSPL, Fig.  3 reports the average running time obtained in evaluating the AncSPL-
Rada similarity measure on groups of random concept pairs grouped by the dimension 
of their corresponding ancestor-based subgraph in SNOMED-CT, GO, and WordNet 
ontologies, respectively. These experiments evaluate the time complexity of the AncSPL 
algorithm on non-tree-like taxonomies based on the min-priority queue 

Table 11  Overall running time in seconds (s)  and average speed in protein pairs per second 
(prot. pairs/s)  obtained by four groupwise GO-based similarity measures (GO, 2020-05-02 version) 
implemented by HESML in the evaluation of the pairwise protein similarity between the Homo 
Sapiens and Canis lupus familiaris organisms

We used the 542193 and 120720 GO annotations for both organisms provided by the “goa_human.gaf” and “go_dog.gaf” 
files, respectively. Approximately 340 million protein pairs and 33.5× 109 GO-annotation pairs are compared

Pairwise protein comparison between two large organisms

Measure Type HESML
Time (s)

Avg. speed
(prot. pairs/s)

SimLP [100] Common
ancestors
ratio

28243 12038

SimUI [100] Common
ancestor
max depth

31922 10651

SimGIC-Seco
[105, 110]

IC-based 30754 11055

BMA-Lin-Seco
[87, 104, 110]

IC-based 7981 42604
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Fig. 2  This figure shows the cumulative distribution function (CDF) of the signed AncSPL length error 
function E(ci , cj) = AncSPL(ci , cj)− spl(ci , cj) , where spl(ci , cj) is the exact length of the shortest path 
between concepts ci and cj in SNOMED-CT, GO, and WordNet ontologies



Page 22 of 31Lastra‑Díaz et al. BMC Bioinformatics           (2022) 23:23 

implementation of the Djikstra’s algorithm 3 using the PosetHERep taxonomy represen-
tation [57], when the input graph is constrained to the corresponding ancestor-based 
subgraph defined by the AncSPL algorithm 1. Every running time value is measured by 
evaluating at least 106 random concept pairs per group in SNOMED-CT and GO, and at 
least 107 pairs per group in WordNet. Likewise, to test experimentally the impact of the 
intrinsic scaling factor kĒ2

Gij
 , which scales the linear time complexity of AncSPL in non-

tree-like ontologies as defined by TC3 , Table 12 compares the theoretical and experimen-
tal values for the expected running-time ratios between ontologies derived from the 
average number of adjacent nodes per ancestor set ĒC measured on the ontologies.

Large GO-based similarity evaluation. To show the performance of HESML in a large 
high-demanding GO-based similarity task, Table  11 shows the performance of four 
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Fig. 3  This figure shows the average running time in micro seconds ( µ s) obtained in evaluating the 
AncSPL-Rada similarity measure for groups of at least 106 random concept pairs in SNOMED-CT and GO, 
and at least 107 random pairs in WordNet, which are grouped by the dimension of their corresponding 
ancestor-based subgraph

Table 12  Experimental confirmation of the kĒ2C factor impacting the linear scalability of AncSPL for 
non-tree-like ontologies ( TC3 ) shown in Fig. 3

First column shows the average number of adjacent nodes per ancestor set for each node in ontology C, denoted by ĒC . 
Second column shows the estimated value for the factor kĒ2C in TC3 obtained by fitting the scalability plot shown in Fig. 3 
to the line tµs = α + (kĒ2C )N . Then, third and fourth columns compare the theoretical and experimental expected ratios 
between the time complexity (slope) of two different ontologies using WordNet (WN) as baseline

Ontology ĒC ̂
kĒ

2

C

(µs)

Ē
2

C
/Ē2

WN
̂
Ē
2

C
/Ē2

WN

SNOMED-CT 72.02 1.191 7.79 5.39

GO 31.14 0.3277 1.46 1.48

WordNet (WN) 25.80 0.2210 1 1
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groupwise GO-based similarity measures in the evaluation of the pairwise protein simi-
larity between all proteins of the Homo Sapiens and Canis lupus familaris organisms, 
using their corresponding protein6 files in GO annotation file (GAF) file format.

Evaluating HESML real-time capabilities. The performance of real-time applications 
is measured as the time in which an application should answer to a pre-defined event. 
The main functionality provided by HESML is the capability to evaluate on-the-fly the 
semantic similarity between ontology concepts at very high rates measured in con-
cept pairs per second without costly auxiliary data structures, as shown in Tables 6, 7 
and 8. This later functionality can be used in other ontology-based semantic similarity 
tasks, such as the evaluation of biomedical sentence similarity reported in Table 9, or 
the evaluation of GO-based protein similarity reported in Table 11, among others. Thus, 
HESML allows the proposal of new real-time biomedical applications demanding either 
a large number of ontology-based semantic similarity evaluations in a pre-defined frac-
tion of a second or the capability to process large ontology-based annotated data files in 
a pre-defined time as a measure of their quality of service.

Discussion
HESML outperforms by four orders of magnitude the implementation of the Rada 
et al. [71] path-based measure of UMLS::Similarity in the MeSH ontology as shown in 
Tables 7 and 9 . However, UMLS::Similarity implementation of the Rada et al. [71] meas-
ure based on caching is roughly three times faster than the HESML real-time imple-
mentation in the large SNOMED-CT ontology, as shown in Table 6. On the other hand, 
HESML outperforms by six and three orders of magnitude the implementation of the 
Lin [87] IC-based measure of UMLS::Similarity in the SNOMED-CT and MeSH ontolo-
gies respectively, as shown in Tables 6, 7 and 9. Finally, HESML outperforms by seven 
and four orders of magnitude the implementation of the depth-based approximation of 
the Wu and Palmer [72] measure of UMLS::Similarity in the SNOMED-CT and MeSH 
ontologies respectively, as shown in Tables 6, 7, and 9 .

HESML outperforms by six, two, and four orders of magnitude the implementation 
of the Rada et al. [71] path-based measure of SML in the MeSH and GO ontologies as 
shown in Tables 7, 8 and 9 respectively. In addition, SML is unable to provide a practi-
cal implementation of the Rada et  al. [71] measure on the large SNOMED-CT ontol-
ogy, as shown in Table 6. On the other hand, HESML implementation of the Lin [87] 
IC-based measure is roughly 2.43 times faster than the implementation of SML based 
on SNOMED-CT as shown in Table 6, as well as a roughly 1.55 times faster on MeSH as 
shown in Tables 7 and 9 , and roughly 2.86 times faster on GO as shown in Table 8.

The conclusions detailed in the two paragraphs above positively confirms our main 
hypothesis H1 on the outperformance of HESML on the state-of-the-art semantic meas-
ures libraries for the biomedical domain.

Path-based measures based on the new AncSPL algorithm are six and five orders of 
magnitude faster than their exact implementation in large ontologies with multiple 
inheritance, such as SNOMED-CT and GO, as shown in Tables  6 and 8 respectively, 

6  http://​curre​nt.​geneo​ntolo​gy.​org/​produ​cts/​pages/​downl​oads.​html.

http://current.geneontology.org/products/pages/downloads.html
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whilst AncSPL obtains similar performance to the exact implementation on tree-like 
ontologies like MeSH, as shown in Tables 7 and 9 , because both implementations are 
identical by definition. On the other hand, the results reported in Table  10 show that 
the reformulation of any path-based measure using AncSPL is highly correlated both in 
Pearson and Spearman correlation metrics with their corresponding exact implementa-
tions. High Spearman rank correlation values guarantee that any ontology-based task 
using ranking selection will get similar or almost identical results when AncSPL-based 
measures are used. Thus, this conclusion endorses the reformulation of any path-based 
similarity measure using AncSPL to obtain real-time approximations of any path-based 
measure on large ontologies with multiple inheritance, such as SNOMED-CT, GO, or 
WordNet. We note that in a very well-known replication of the MC30 [137] similarity 
benchmark carried-out by Resnik [85, Sect.  3.2], the inter-annotator Pearson correla-
tion was 0.8848 for 30 word pairs, whilst in the most recent building of the SimLex-999 
benchmark [138, Sect. 4.1] the inter-annotator Spearman correlation was 0.67 for 999 
word pairs. Thus, these two later values are currently considered as reliable upper 
bounds of any practical estimation method for the semantic similarity between word and 
concepts, or like Resnik says “This value represents an upper bound on what one should 
expect from a computational attempt to perform the same task” [85, Sect. 3.2]. For this 
reason, looking at the values reported in Table 10, we can conclude that there is a high 
correlation between the exact path-based measures and their AncSPL reformulations.

Finally, the significant performance gain shown in Tables 6, 7, 8 and 9, together with 
the high-correlation values shown in Table 10, allow to confirm positively our hypoth-
esis H2 on the performance, scalability, and approximation quality of the new AncSPL 
algorithm.

Groupwise similarity measures based on GO implemented by HESML provide a high 
average speed in the evaluation of the pairwise protein similarity between two large 
organisms in a large-scale experiment, as shown in Table  11. Thus, HESML can sig-
nificantly contribute to improving the performance of any application using GO-based 
semantic similarity measures. Likewise, HESML opens the possibility of processing 
large-scale GO annotated data at high computation rates, which could encourage new 
applications like the similarity-based search of proteins in large GO-annotated data-
bases, among others.

The shortest-path length estimated by AncSPL is always greater or equal to the exact 
value, as shown in Fig. 2 by the empirical Cumulative Distribution Function (CDF) for 
SNOMED-CT, GO, and WordNet ontologies, respectively. The signed length error of 
AncSPL is 0 with a probability of 0.479, 0.581, and 0.612, on SNOMED-CT, GO, and 
WordNet, respectively. On the other hand, the signed length error of AncSPL is less or 
equal to 2 with a probability of 0.874, 0.898, and 0.8841, on the three aforementioned 
ontologies, respectively. Thus, the AncSPL-based reformulations of any path-based simi-
larity measure on non-tree-like ontologies always return a less or equal value than their 
corresponding base measures evaluated using an exact shortest-path algorithm.

The signed length error of AncSPL decreases with the tree-like deviation (tree-likeσ ) , 
as shown in Fig. 2. It means that lower is the number of concepts with multiple parents, 
higher is the probability of obtaining an AncSPL length error equals to 0. However, look-
ing at the correlation values reported in Table 10, we can observe that correlation values 
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obtained by the AncSPL-based reformulations in WordNet are not significantly higher 
than the values obtained in SNOMED-CT and GO as would be expected, with the only 
exception of the IC-based weighted AncSPL-coswJ&C measure, despite WordNet is 
close to being a tree-like ontology ( tree-likeσ = 0.0269). The AncSPL-coswJ&C measure 
obtains the higher correlation values in all ontologies and random samples, as shown 
in Table 10, with the only exception of the Pearson correlation for 50 concept pairs in 
SNOMED-CT. We conjecture that AncSPL-coswJ&C is more immune to the AncSPL 
approximation error than the edge-counting measures because it is defined by the length 
of the IC-based weighted shortest path between concepts.

The average running time of the AncSPL algorithm is linear regarding the dimension 
of the ancestor-based subgraph, as predicted by Theorem 1 and shown experimentally in 
Fig.  3 for SNOMED-CT, GO, and WordNet ontologies, respectively. As pointed out 
above, the performance of AncSPL depends on the dimension of the common ancestor-
based subgraph and the average number of adjacent nodes for the nodes in the common 
ancestor-based subgraph, and not other factors as the distance between concepts, their 
depth in the taxonomy, or the ontology size. Likewise, the values in the third and fourth 
columns of Table 12 confirm that the linear time complexity of AncSPL regarding the 
dimension of the ancestor-based subgraph is scaled by the factor Ē2

Gij
 . Looking at the 

third and fourth columns of Table 12, we can see that the ratio between the running-
times of GO and WordNet is 1.48, whilst the expected theoretical value is 1.46, and the 
ratio between SNOMED and WordNet is 5.39, whilst the expected theoretical value is 
7.79. These minor differences between the theoretical and experimental values for the 
scaling factor of TC3 can be attributed to measurement noise and the removal of non-
quadratic factors of ĒGij to approximate its time complexity. Likewise, we conjecture that 
the difference is higher for SNOMED than GO, because its scalability plot is noisier, as 
shown in Fig. 3.

Next developments planned for HESML. As forthcoming activities, we plan to imple-
ment further tools and functionality as follows: (1) a R-package to make the HESML 
functionality accessible from the R program; (2) further GO-based semantic similarity 
measures; (3) support of further pre-trained word embeddings models for the biomedi-
cal domain; and (4) gene clustering methods among others.

Conclusions
We have introduced a new semantic measures library for the biomedical domain called 
HESML V1R5, which implements the largest set of ontology-based semantic similarity 
measures and IC models for the SNOMED-CT, MeSH, GO, WordNet and OBO-based 
ontologies, as well as a new approximated shortest-path algorithm called AncSPL which 
provides a real-time and highly-correlated reformulation of any path-based semantic 
similarity measure. Our reproducible experiments show that HESML significantly out-
performs current state-of-the-art semantic measures libraries in the real-time evalu-
ation of semantic similarity measures. Likewise, our new aforementioned AncSPL 
algorithm allows for the first time the real-time evaluation of any path-based semantic 
measures, such as the large set of measures based on AncSPL which are implemented 
by HESML V1R5. In addition, we show that AncSPL linearly scales regarding the dimen-
sion of the common ancestor subgraph regardless of the ontology size, and the AncSPL 
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reformulations of path-based measures are up to six and five orders of magnitude faster 
than their exact implementation in SNOMED-CT and GO ontologies, respectively.

The main features of HESML V1R5 are as follows: (1) the implementation of a very 
large set of semantic similarity methods, IC models, biomedical ontologies, and Word-
Net, into a single software library; (2) a real-time performance and linear scalability 
as regards the ontology size; (3) an open and easily extensible architecture based on 
abstract Java interfaces; and finally, (4) its implementation based on a portable and first-
class object-oriented programming language like Java. For this reason, HESML V1R5 is a 
valuable resource with a huge potential for the development of high-throughput experi-
ments and data-intensive applications in the fields of genomics and biomedical text 
mining.

As forthcoming activities, we plan to develop a library of sentence similarity measures 
for a biomedical survey [41], and Python and R interfaces for HESML.
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